ALMOST ii- NORMAL SPACES

M.C. Sharma, Poonam Sharma and Neeraj Kumar Tomar

Department of Mathematics N.R.E.C. College Khurja - 203131 (U.P.) India , Reserch Scholar Deptt. Of Mathematics Mewar University, Gangrar Chittorgarh (Raj.)- 312901 and N.R.E.C. College Khurja - 203131 (U.P.) India.

Abstract. The aim of this paper is to introduced and study a new class of almost normal spaces, called almost ii-normal spaces by using ii-open sets due to Amir A.Mohammed and B.S Abdullah [1] and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of almost ii-normal spaces.

1.Introduction

In this paper, we introduced the concept of almost ii-normal by using ii-open set due to Amir A.Mohammed and B.S.Abdullah [1]and obtained several properties of such a space. In 1970, Singal and Arya [6] introduced the concept of almost normal spaces as a generalization of normal - spaces by using regularly closed sets and obtained several properties of such a space. Recently, Hamant Kumar and M.C.Sharma [2] introduced a new class of spaces, namely almost γ -normal and mildly γ -normal spaces are weaker form of γ - normal spaces .We show that these normal spaces, namely almost γ -normal and mildly γ -normal spaces are regularly open hereditary are give relationship of almost γ -normal and mildly γ -normal spaces and obtain characterizations and preservation theorems of almost normal and mildly γ -normal spaces. We introduced the concepts of gii- closed, rgii-closed, regularly ii closed sets, M-ii-closed, M-ii- open, almost ii-irresolute functions. Moreover, we obtain some new characterizations and preservation theorems of almost apaces. Throughout this paper, (X, τ), (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly stated.

2000 AMS Subject Classification: 54D15, 54C08.

Key words and phrases. ii-open, ii-closed sets, M-ii-closed, M-ii-open, almost ii-irresolute functions, almost ii-normal spaces.

2. Preliminaries

2.1. Definition. A subset A of a topological space X is called

1.α-closed [5] if cl(int(cl(A))) ⊆ A.

- 2. ga-closed [4]ifa-cl(A) \subset U, whenever A \subset U, and U is a-open in X.
- 3. **rga-closed** [**7**]if α -cl(A) \subset U, whenever A \subset U, and U is regularly α -open in X.
- 4. **ii-closed** [1] if $int(cl(A)) \cap cl(\delta-int(A)) \subseteq A$.
- 5. **gii-closed** if ii-cl(A) \subset U, whenever A \subset U and U is ii-open in X.
- 6. regularly ii-open if there is a regularly open set U such that

 $U \subset A \subset ii-cl(U)$.

7.**rgii-closed** if ii-cl(A) \subset U, whenever A \subset U, and U is regular ii-open in X.

The complement of α -closed (resp. g α -closed, rg α -closed, ii-closed, gii-closed, rgii-closed) set is said to be α -open (resp.g α -open,rg α -open,ii-open, gii-open, rgii-open) set. The complement of regularly ii-open set is said to be regularly ii-closed set.

Definitions stated in preliminaries and above, we have the following diagram:

closed
$$\Rightarrow \alpha$$
-closed $\Rightarrow g\alpha$ -closed $\Rightarrow rg\alpha$ -closed
 $\downarrow \qquad \downarrow \qquad \downarrow$
ii-closed \Rightarrow gii-closed \Rightarrow rgii-closed.

However the converses of the above are not true may be seen by the following examples

2.2. Example. Let $X = \{a,b,c,d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$. Then the set $A = \{c\}$ is α -closed set as well as ii-closed set but not closed set in X.

2.3. Example.Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the set $A = \{a, d, e\}$ is rga-closed set as well as rgii-closed set but not gaclosed set and not gii-closed set in X.

2.4.Example.Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $A = \{c\}$ is gii-closed set but not closed set in X.

3. Almost ii- Normal Spaces

3.1. Definition. A topological space X is said to be **almost - normal** [6] (resp.**almost ii-normal**) if for every pair of disjoint sets A and B, one of which is closed and other is regularly closed, there exist disjoint open(resp.ii-open)sets U and V of X such that $A \subset U$ and $B \subset V$.

3.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{b\}$ is closed and $B = \{a\}$ is regularly closed sets there exist disjoint open sets $U = \{b, c, d\}$ and $V = \{a\}$ of X such that $A \subset U$ and $B \subset V$. Hence X is almost normal as well as almost ii-normal because every open set is ii-open set.

By the definitions and examples stated above, we have the following diagram :

normal \Rightarrow almost - normal \Rightarrow almost ii-normal.

3.3.Lemma. A subset A of a topological space X is rgii-open iff $F \subset \text{ii-int}(A)$ whenever F is regularly closed and $F \subset A$.

3.4.Theorem. For a topological space X, the following are equivalent :

- (a) X is almost ii- normal.
- (b) For every closed set A and every regularly closed set B, there exist disjoint gii-open sets U and V such that $A \subset U$ and $B \subset V$.
- (c) For every closed set A and every regularly closed set B, there exist disjoint rgii-open sets U and V such that $A \subset U$ and $B \subset V$.
- (d) For every closed set A and every regularly open set B containing A, there exists a gii-open set U of X such that $A \subset U \subset ii-cl(U) \subset B$.
- (e) For every closed set A and every regularly open set B containing A, there exists a rgii-open set U of X such that $A \subset U \subset ii-cl(U) \subset B$.
- (f) For every pair of disjoint sets A and B, one of which closed and other is regularly closed, there exist ii-open sets U and V such that A ⊂ U and B ⊂ V and U ∩V = \$\overline\$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (d) \Rightarrow (e), (c) \Rightarrow (d), (e) \Rightarrow (f) and (f) \Rightarrow (a).

(a) \Rightarrow (b). Let X be a almost ii-normal. Let A be a closed and B be a regularly closed sets in X. By assumption, there exist disjoint ii-open sets U and V such that $A \subset U$ and $B \subset V$. Since every ii-open set is gii-open set, U, V are gii-open sets such that $A \subset U$ and $B \subset V$.

(b) \Rightarrow (c). Let A be a closed and B be a regularly closed sets in X. By assumption, there exist disjoint gii-open sets U and V such that A \subset U and B \subset V. Since every gii-open set is rgii-open set, U, V are rgii-open sets such that A \subset U and B \subset V.

(d) \Rightarrow (e). Let A be any closed set and B be any regularly open set containing A. By assumption, there exists a gii-open set U of X such that $A \subset U \subset ii-cl(U)$

 \subset B. Since every gii-open set is rgii-open set, there exists a rgii-open set U of X such that A \subset U \subset ii-cl(U) \subset B.

(c) ⇒(d). Let A be any closed set and B be a regularly open set containing A. By assumption, there exist disjoint rgii-open sets U and W such that A ⊂U and X - B ⊂W. By **Lemma 3.3**, we get, X - B ⊂ ii-int(W) and $ii\text{-cl}(U) ∩ ii\text{-int}(W) = \phi$. Hence, A ⊂ U ⊂ ii-cl(U) ⊂ X –ii-int(W) ⊂ B.

(e) \Rightarrow (f). For any closed set A and any regularly open set B containing A. Then $A \subset X - B$ and X - B is a regularly closed. By assumption, there exists a rgii-open set G of X such that $A \subset G \subset \text{ii-cl}(G) \subset X - B$. Put U = ii-int(G), V = X -ii-cl(G). Then U and V are disjoint ii-open sets of X such that $A \subset U$ and $B \subset V$.

(f) \Rightarrow (a) is obvious.

3.5.Definition. A function $f: X \to Y$ is called **rc-continuous** [**3**] if for each regular closed set F in Y, $f^{-1}(F)$ is regularly closed in X.

3.6.Definition. A function $f: X \to Y$ is called **M** -ii-open (resp. **M** -ii-closed) if $(U) \in iiO(Y)$ (resp. $f(U) \in iiC(Y)$) for each $U \in iiO(X)$ (resp. $U \in iiC(X)$).

3.7.Definition. A function $f: X \to Y$ is called **almost ii-irresolute** if for each $x \in X$ and each ii-neighbourhood V of f(x), ii-cl($f^{-1}(V)$) is a ii-neighbourhood of x.

4.Preservation Theorems

4.1.Theorem. If $f : X \to Y$ is continuous M-ii-open rc-continuous and almost ii-irresolute surjection from an almost ii-normal space X onto a space Y, then Y is almost ii-normal.

Proof. Let A be a closed set and B be a regularly open set containing A. Then by rccontinuity of f, $f^{-1}(A)$ is a closed set contained in the regularly open set $f^{-1}(B)$. Since X is almost ii-normal, there exists a ii-open set V in X such that $f^{-1}(A) \subset V \subset ii\text{-cl}(V)$ $\subset f^{-1}(B)$ by **Theorem 3.4**. Then,

 $f(f^{-1}(A)) \subset f(V) \subset f(ii-cl(V)) \subset f(f^{-1}(B))$. Since f is M-ii-open and almost ii-irresolute surjection, it follows that $f(V) \in iiO(Y)$, we obtain

 $A \subset f(V) \subset ii$ -cl(f(V)) $\subset B$. Then again by **Theorem 3.4**, Y is almost ii- normal.

4.2.Theorem. If $f: X \to Y$ is rc-continuous M -ii-closed map from an almost ii-normal space X onto a space Y, then Y is almost ii- normal

.Proof. Easy to verify.

REFERENCES

1.Amir A.Mohammed and B.S.Abdullah,ii-opensets in topological spaces, *Internat. Math.Forum* **14**(2019),41-48.

2. Hamant Kumar and M.C.Sharma , Almost γ -normal and mildly γ -normal spaces in topological spaces, *Internat. J. of Advanced Research in Sci. and Engg.*

5(2016),no. 8,670-680.

3. D. S. Jankovic, A note on mappings of extremally disconnected spaces. *Acta Math. Hungar*. **46** (1-2) (1985), 83-92.

4.H. Maki, R. Devi and Balachandran, Generalized α-closed sets in topology, *Bull. Fukuoka* Univ. Ed. Part III40 (1991), 13-21.

5.O.Njastad,On some classes of nearly open sets, *Pacific J. Math.*,15(1965), 961-970.

6.M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces. *Glasnik Matematicki Tom*. 5(25) no.1 (1970), 141-151.

7.A.Vadivel and K.Vairamanickam, rgα-closed and rgα-closed sets. *International Journal of Math. Analysis*Vol. **3**,37(2009), 1803-